
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Implementation of A* Algorithm for
Exfiltration Route Optimization in DMZ Mode on

Koschei Complex Map of Call of Duty: Warzone 2.0
Christopher Brian - 13522106

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail (gmail): 13522106@std.stei.itb.ac.id

Abstract—DMZ is an extraction shooter game mode featured
in Call of Duty: Warzone 2.0 where players can complete
objectives while surviving from other players and bots, and save
their progress after a success exfiltration. This paper will only
focus on the Koschei Complex Map of the game mode.
Considering the survival element, an optimal route planning for
exfiltration that minimizes time is important for minimizing the
probability of meeting other players and increasing the success
rate of exfiltration. Fortunately, route optimization is both
possible and well established with the use of algorithms such as
A*. This paper introduces a solution utilizing A* algorithm to
find the optimal route in an efficient way. (Abstract)

Keywords—A*; Call of Duty; DMZ; pathfinding; route
optimization; Warzone

I. INTRODUCTION
DMZ is a mode featured in Call of Duty: Warzone 2.0. It is

an extraction mode shooter game with a sandbox experience,
giving players a large space for creativity in completing in
game objectives and surviving. The mode is available with the
release of Warzone 2.0 (coinciding with the release of Call of
Duty: Modern Warfare II) in late 2022. DMZ takes place in
several locations called “Exclusion Zones”, namely Al Mazrah,
Building 21, Ashika Island, Koschei Complex, and Vondel.

Fig. 1. DMZ Game Mode in Call of Duty: Warzone 2.0

(Source: https://www.forbes.com/sites/erikkain/2023/12/01/activision-
just-killed-call-of-dutys-dmz-mode-but-you-can-still-sort-of-play-it-

for-now/)

In this game mode, players can complete objectives in the
forms of various faction missions, as well survive both enemy
players and bots in order to fight their way over to exfiltration.
Players can also keep valuable loots and items once they
successfully exfiltrate.

At the start of the game mode, players, either as a solo or
part of a team of maximum three players, will randomly spawn
in one of the multiple spawn locations in the map they chose at
the start of the matchmaking process. Players will then be
given a set time (different for each map) to exfiltrate before the
time ends, or otherwise die and lose all their valuable loots.
There are multiple exfiltration sites on the map in each match,
therefore players are able to choose the nearest exfiltration site.
However, players can still choose to exfiltration in any
exfiltration sites on the map.

Every map in DMZ is full of enemy players and aggressive
bots which will continue to attack and try to kill you once
aggravated. While players can choose to play carefully and use
stealth to avoid confrontation with enemy players and bots, the
random and complex nature of the mode makes it hard for
players to play this way in each match. Players can exfiltrate
right from the start of the match, but spending more time in the
match will give players more chance to complete their
objectives and gain valuable loots, as well as increase their
chance of meeting enemy players and bots.

Players’ success in DMZ is directly tied to exfiltration
success, considering the only other way to end the match is by
automatically dying once the set time expired. In order to
maximize their success rate of exfiltration, players need to
design and implement a robust strategy.

One such strategy is planning an optimal route that
maximize players’ survivability until exfiltration. In this game
mode, players’ survivability can mostly be attributed to their
chance of meeting enemy players and bots. It can be deducted
that in order to minimize this chance, players need to go
straight to the exfiltration site as soon as possible when they
choose to end the match. Therefore, the correct strategy to
apply here is a route optimization strategy from the players
location to the nearest exfiltration site.

mailto:13522106@std.stei.itb.ac.id
https://www.forbes.com/sites/erikkain/2023/12/01/activision-just-killed-call-of-dutys-dmz-mode-but-you-can-still-sort-of-play-it-for-now/
https://www.forbes.com/sites/erikkain/2023/12/01/activision-just-killed-call-of-dutys-dmz-mode-but-you-can-still-sort-of-play-it-for-now/
https://www.forbes.com/sites/erikkain/2023/12/01/activision-just-killed-call-of-dutys-dmz-mode-but-you-can-still-sort-of-play-it-for-now/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

A* algorithm is a popular route-finding algorithm that is
used to find the shortest path(s) between two locations. This
algorithm considers the cost to reach a specific node, and a
heuristic or estimated extra cost to reach the goal node from
that specific node to guide the searching process. A* algorithm
go through the graph by iteratively choosing the node with the
minimum total cost, which is the sum of the cost to reach the
node from the start node, and the estimated cost of reaching the
end node. A* algorithm is also popularly used in puzzle solving
games and artificial intelligence.

In this game mode, A* algorithm is used to find the optimal
route from a player’s location to the nearest exfiltration site in
the map. This paper will explore how A* algorithm is
implemented to find the shortest route from a player’s location
to the nearest exfiltration site.

II. BASIC THEORY

A. A* Algorithm
A* Algorithm is one of the most frequently used algorithms

for optimal pathfinding. The algorithm could be described as
an improvement of the older Dijkstra’s algorithm. However,
A* algorithm works more efficiently by using heuristics to
guide its search. Compared to Dijkstra’s algorithm where the
goal node is every other node excluding the start node, A*
algorithm only has one goal node.

A* algorithm is classified as an informed search, defined as
any search algorithm where the information about the end node
is known, which allows it to find the optimal route from the
start node to the end node in a shorter time. The optimal route
is the route with the minimum total cost. The cost used in the
algorithm could be in various forms, including but not limited
to number of steps, distance, time, and price, depending on the
problem being solved. The algorithm works by maintaining a
tree of paths, beginning for the start node and expanding each
node in an order until it finally reaches the end node.

Fig. 2. Illustration of A* Algorithm Path Tree

(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Route-Planning-Bagian2-2021.pdf)

In the case of tree expansion, A* algorithm have to pick the
path that should be prioritized to be expanded next. To do this,
the algorithm will choose the path that minimizes (or
maximizes, depending on the type of the problem) the total
cost, which is the sum of the cost from the start node to the
node, and the estimated cost from that node to the end goal.
Mathematically, it can be expressed by the formula,

For. 1. Formula for the total cost of a node

(Source: author’s documentation)

where g(n) is the cost to reach a node from the start node
and h(n) is the heuristically estimated cost to reach the end
node from that node. The sum of both is equal to f(n), which
will then be minimized or maximized when choosing a node in
every step.

In general, the steps of A* algorithm could be expressed as
so.

1. Initialize the priority queue.

2. Choose the start node and set it as the current node.

3. Stop search if the current node is a goal node.

4. Find all children node of the current node and insert it
to the priority queue according to the total cost.

5. Remove the element with the lowest cost from priority
queue and set it as the current node.

6. Repeat steps 3-6 until the optimal path is formed.

Here is an example of a pseudocode for implementing the
A* algorithm.

Fig. 3. A* algorithm pseudocode example

(Source: https://www.researchgate.net/figure/A-search-algorithm-
Pseudocode-of-the-A-search-algorithm-operating-with-open-and-

closed_fig8_232085273)

https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://www.researchgate.net/figure/A-search-algorithm-Pseudocode-of-the-A-search-algorithm-operating-with-open-and-closed_fig8_232085273
https://www.researchgate.net/figure/A-search-algorithm-Pseudocode-of-the-A-search-algorithm-operating-with-open-and-closed_fig8_232085273
https://www.researchgate.net/figure/A-search-algorithm-Pseudocode-of-the-A-search-algorithm-operating-with-open-and-closed_fig8_232085273

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. Admissible A* Algorithm Heuristic
In order to from the globally optimal solution, the heuristic

function (h(n)) must be admissible, meaning the value of said
function should never overestimate the actual cost from a
specific node to the end node. Otherwise, it is possible for the
algorithm to choose the wrong step when forming the route.

An admissible heuristic function (h(n)) is formally defined
as so. For every node n, h(n) satisfies h(n) ≤ h*(n), where h*(n)
is the actual minimum cost from the node n to the end node.
Therefore, an admissible heuristic function is a heuristic
function that is optimistic in nature.

While an exact heuristic will calculate the exact value of h
in some algorithm, such as Dijkstra’s algorithm, it is also time
consuming. This particular technique includes pre-computing
the distance between each node before starting the searching
process with the A* algorithm. However, if the problem
involves no obstacles between nodes, the exact value can just
be easily calculated using formulas such as the Euclidean
distance.

On the other hand, approximation heuristic is often less
time consuming. Finding the approximation heuristic need not
pre-computation process done between each pair of nodes, but
instead uses the known information about the end node to
estimate the remaining distance or cost between a specific node
to the end node. One of the most frequently used formulas to
calculate the approximation heuristic is the Manhattan distance.

A Manhattan distance between two nodes is calculated as a
sum of absolute values of the differences between the end
node’s Cartesian coordinates.

Fig. 4. Pseudocode for calculating Manhattan distance

(Source: https://www.geeksforgeeks.org/a-search-algorithm)

Manhattan distance is ideally used to find the
approximation heuristic when the movement is only allowed in
four directions only (up, down, right, left).

C. Exfiltration in DMZ
 DMZ is an extraction shooter game mode where players
can move around the map freely and have to exfiltrate before
the set time ends to successfully end a match. The game is
played in an area of interconnecting paths. Exfiltration is
simple, all the player needs to do is to go to the nearest
exfiltration site, wait until the exfiltration arrives, and survive
until the exfiltration process ends.

In this paper, the author only focused on the Koschei
Complex map of the game mode. The reason being the Koschei
Complex map is the only map with truly defined paths that
connects pairs of intersections in the map. In this map, players
can only move in four directions from every start point (up,
down, left, right), compared to the other maps where players
can generally move freely from any location to any other
location on the map.

Fig. 4. Koschei Complex map gameplay

(Source: https://www.charlieintel.com/call-of-duty-warzone/what-is-
koschei-complex-in-dmz-warzone-2-area-explained-250087/)

Fig. 5. Koschei Complex map paths and exfiltration sites

(Source: https://wzhub.gg/map/koschei/dmz)

 In each match, players will randomly spawn inside the map,
given a set time to explore the map and complete objectives,
and can choose to successfully end the match by exfiltrating
from any of the three exfiltration sites available in the map.

 As seen in the image, players are only able to move in four
directions, and the paths are well defined. As our goal is to
minimize the time to go to the nearest exfiltration site in order
to minimize the chance of meeting enemy players and bots, an
optimal route for this problem will be the route with the
shortest total distance from the player’s location to any of the
three available exfiltration sites on the Koschei Complex map.

 An optimal and robust route would consist of which steps
should the player take in order to go from a location to the
nearest exfiltration map available in the map. Such strategy
would be very crucial in maximizing the success rate of the
player and survivability. Considering that if at any time before
the exfiltration ends a player dies, all of the progress in that
match would be deleted and reset, and the player would have to
then start from zero again in the next match. Additionally, if a
player is able to successfully exfiltrate in several matches
without being killed one time between the matches, the player
will gain an extra exfiltration streak which will then reward the
player with some more valuable perks.

https://www.geeksforgeeks.org/a-search-algorithm
https://www.charlieintel.com/call-of-duty-warzone/what-is-koschei-complex-in-dmz-warzone-2-area-explained-250087/
https://www.charlieintel.com/call-of-duty-warzone/what-is-koschei-complex-in-dmz-warzone-2-area-explained-250087/
https://wzhub.gg/map/koschei/dmz

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 6. An exfiltration site in the Koschei Complex map

(Source: https://twinfinite.net/call-of-duty/how-to-complete-bedrock-
dmz-mission-warzone-2/)

III. IMPLEMENTATION

A. Mapping into A* Algorithm Domain
1. Solution Space

The solution space of exfiltration route for
DMZ game mode on Koschei Complex map is
represented in a vector with n-tuple sized:

𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥n)
with 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥n ∈ {list of nodes}

For. 2. Solution Space of Exfiltration Route for DMZ
Game Mode on Koschei Comples Map

(Source: author’s documentation)
with depth being the number of nodes needed to be
traversed in an optimal exfiltration route formed using
A* algorithm searching.

2. Coordinate Representation
 Each node will have a cartesian coordinates
represented with a Java class as follows.

Snapshot. 1. Java class for representing coordinates.
(Source: author’s documentation)

3. Node Representation
 In the implementation made, nodes are
represented with a Java class as follows.

Snapshot. 2. Java class for representing nodes.

(Source: author’s documentation)

// Coordinate class
public class Coordinate {
 // Atribut
 private int x;
 private int y;
 // Constructor
 public Coordinate(int x, int y) {
 this.x = x;
 this.y = y;
 }
 // Getter for x
 public int getX() {
 return this.x;
 }
 // Getter for y
 public int getY() {
 return this.y;
 }
}

// Node class
public class Node {
 // Class attributes
 private String name;
 private Coordinate coordinate;
 private int gn;
 private int hn;
 private Node parent;
 // Constructor
 public Node(String name, Coordinate
coordinate, int gn, int hn, Node parent)
{
 this.name = name;
 this.coordinate = coordinate;
 this.gn = gn;
 this.hn = hn;
 this.parent = parent;
 }
 // Getter for name
 public String getName() {
 return this.name;
 }
 // Getter for coordinate
 public Coordinate getCoordinate() {
 return this.coordinate;
 }
 // Getter for g(n)
 public int getGn() {
 return this.gn;
 }
 // Getter for h(n)
 public int getHn() {
 return this.hn;
 }
 // Setter for g(n)
 public void setGn(int newGn) {
 this.gn = newGn;
 }
 // Setter for h(n)
 public void setHn(int newHn) {
 this.hn = newHn;
 }
 // Getter for parent
 public Node getParent() {
 return this.parent;
 }
}

https://twinfinite.net/call-of-duty/how-to-complete-bedrock-dmz-mission-warzone-2/
https://twinfinite.net/call-of-duty/how-to-complete-bedrock-dmz-mission-warzone-2/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

B. A* Main Algorithm
The A* algorithm implementation will be processed by a

Java class as follows.

// Import library
import java.util.*;
// Solver class
public class Solver {
 // Attribute
 private Set<String> map;
 // Constructor
 public Solver (Set<String> map) {
 this.map = map;
 }
 // Function for forming a route from start
to end node
 private List<String> formRoute (Node end)
{
 List<String> route = new
ArrayList<>();
 Node node = end;
 // Form route by recursively calling
the parent node
 while (node != null) {
 route.add(0, node.getName());
 node = node.getParent();
 }
 return route;
 }
 // Function to find all child nodes
 private List<String> findChildren (String
name) {
 List<String> children = new
ArrayList<>();
 String childName;
 // Traverse through the map
 for (String nodeString : map) {
 // The parent node is the part of
the string after the last space
 childName =
nodeString.substring(nodeString.lastIndexOf("
") + 1);
 if (childName.equals(name)) {
 children.add(nodeString);
 }
 }
 return children;
 }
 // Function to calculate g(n), which is
the distance between a parent node and a child
node
 private int calculateGn (Node parentNode,
String childNodeString) {
 int parentX =
parentNode getCoordinate() getX();

 int childX =
Integer.parseInt(childNodeString.split("
")[1]);
 int childY =
Integer.parseInt(childNodeString.split("
")[2]);
 return (int) (Math.abs((parentX
- childX)) + Math.abs((parentY -
childY)));
 }
 // Function to calculate heuristic
h(n), which is the Manhattan distance
between a node and the end node
 private int calculateHn (Node
startNode, String endNodeString) {
 int startX =
startNode.getCoordinate().getX();
 int startY =
startNode.getCoordinate().getY();
 int endX =
Integer.parseInt(endNodeString.split("
")[1]);
 int endY =
Integer.parseInt(endNodeString.split("
")[2]);
 return (int) (Math.pow((startX -
endX), 2) + Math.pow((startY - endY),
2));
 }
 // Function for optimal route
formation from the start node to the end
node using A* algorithm
 public List<String> AStar (String
startNodeString, String endNodeString) {
 // Initialize route
 List<String> route = new
ArrayList<>();
 // Initialize priority queue
based on f(n)
 Queue<Node> queue = new
PriorityQueue<>(Comparator.comparingInt(
Node -> (Node.getGn() + Node.getHn())));
 // Initialize set for visited
nodes
 Set<String> visitedNodeNames =
new HashSet<>();
 // Add start node to queue
 String name =
startNodeString.split(" ")[0];
 Coordinate coordinate = new
Coordinate(Integer.parseInt(startNodeStr
ing.split(" ")[1]),
Integer.parseInt(startNodeString.split("
")[2]));
 Node tempNode = new Node(name,
coordinate, 0, 0, null);
 queue.offer(new Node(name,
coordinate, 0, calculateHn(tempNode,
endNodeString), null));

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Snapshot. 3. Java class for implementing A* algorithm.
(Source: author’s documentation)

IV. RESULT
In order to test the A* algorithm implementation

thoroughly, three examples of start locations will be used. The
program will then generate a route consisting of the nodes a
player should take in order to travel the shortest path from the
starting location to the nearest exfiltration site available on the
map. The resulting optimal path generated by the program will
then be examined and checked.

1. First Test

Fig. 7. Player’s location for the first test indicated by a red dot.

(Source: Author’s documentation)

Fig. 8. Route generated by the program for the first test.

(Source: Author’s documentation)

2. Second test

Fig. 9. Player’s location for the second test indicated by a red dot.

(Source: Author’s documentation)

 // Explore each node in the queue until
queue is empty
 while (!queue.isEmpty()) {
 // Choose the node with the lowest
cost from the queue
 Node currentNode = queue.poll();

visitedNodeNames.add(currentNode.getName());
 // If the chosen node is the end
node
 if
(currentNode.getName().equals(endNodeString.spl
it(" ")[0])) {
 // Return result
 route = formRoute(currentNode);
 return route;
 }
 // Check every children node of the
current node
 for (String childNodeString :
findChildren(currentNode.getName())) {
 // If the child node is
unvisited
 if
(!visitedNodeNames.contains(childNodeString.spl
it(" ")[0])) {
 // Calculate g(n) and h(n)
of the child node, add to queue
 name =
childNodeString.split(" ")[0];
 coordinate = new
Coordinate(Integer.parseInt(childNodeString.spl
it(" ")[1]),
Integer.parseInt(childNodeString.split("
")[2]));
 int gn =
currentNode.getGn() + calculateGn(currentNode,
childNodeString);
 int hn =
calculateHn(currentNode, endNodeString);
 queue.offer(new Node(name,
coordinate, gn, hn, currentNode));
 }
 }
 }
 return route;
 }
}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 10. Route generated by the program for the second test.

(Source: Author’s documentation)

3. Third Test

Fig. 10. Player’s location for the third test indicated by a red dot.

(Source: Author’s documentation)

Fig. 12. Route generated by the program for the third test.

(Source: Author’s documentation)

V. CONCLUSION AND SUGGESTION

A. Conclusion
A* algorithm is a popular route-finding algorithm that is

able to efficiently construct the shortest path between any two
nodes on a graph and produce globally optimal solutions. It has
many applications in various fields, including but not limited to
route planning, puzzle games solving, and artificial
intelligence.

In the context of route finding, one such example for the
usage of A* algorithm for this particular field is finding the
optimal exfiltration route on the Koschei Complex Map of
DMZ Game Mode in Call of Duty: Warzone 2.0. The result
shows that A* algorithm does form the optimal route for this
game mode both efficiently and effectively. It succeeds in
constructing the optimal path, that is the path with the shortest
distance and therefore minimum time to complete

B. Suggestion
The code currently used in the program is still far from

perfect. It only considers the distance between nodes on the
map for its cost, while in reality, a player’s survivability
(chance of meeting enemy players and bots) is also related to
existence of proper cover positions, openness, and other
complex factor.

The current version of the A* algorithm implementation
could certainly be improved and expanded to consider more
factor and produce a more realistic optimum solution for the
problem. For future developments, the author strongly suggests
more trial and errors in order to find a more efficient and
thorough heuristic and cost calculation.

ACKNOWLEDGMENT (Heading 5)
First and foremost, all praise and glory to Jesus Christ, our

Lord and Savior, which gives the author strength and
knowledge needed to finish this paper. The author would also
give a big appreciation to his lecturer on this subject, Dr. Nur
Ulfa Maulidevi, S.T, M.Sc., for giving this task on writing a
paper related to the subject.

The author feels very grateful being given this task because
it has helped him significantly in gaining a deeper
understanding of how pathfinding algorithms, in particular the
A* algorithm, works and how one can correctly design an
implementation of the algorithm to solve specific problems.

The author would also want to thank his family and friends
who supported him both academically and mentally through a
lot of hard times in this semester.

REFERENCES
[1] Apa itu DMZ? Begini penjelasan detail mode baru Warzone 2.0

[Online]. https://www.oneesports.id/seputar-game/penjelasan-mode-
warzone-2-0-dmz/. Accessed on June 11th 2024.

[2] Artificial intelligence: a modern approach. Norvig, Peter (4th ed.).
Russell, Stuart J. (2018). Boston: Pearson.

[3] DMZ [Online]. https://callofduty.fandom.com/wiki/DMZ. Accessed on
June 11th 2024.

https://www.oneesports.id/seputar-game/penjelasan-mode-warzone-2-0-dmz/
https://www.oneesports.id/seputar-game/penjelasan-mode-warzone-2-0-dmz/
https://callofduty.fandom.com/wiki/DMZ

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

[4] "Engineering Route Planning Algorithms". Algorithmics of Large and
Complex Networks: Design, Analysis, and Simulation. Lecture Notes in
Computer Science. Delling, D.; Sanders, P.; Schultes, D.; Wagner, D.
(2009).

[5] Intoduction to A* [Online].
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.
html. Accessed on June 12th 2024.

[6] Penentuan Rute (Route/Path Planning) Bagian 2 : Algoritma A*
[Online]. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
202 1/Route-Planning-Bagian2-2021.pdf. Accessed on June 11th 2024.

STATEMENT OF ORIGINALITY

I hereby declare that the paper I have authored is an original
work, and is not a copy nor a translation from another
person’s paper, nor is it plagiarized.

Bandung, July 12th, 2024

Christopher Brian
13522106

http://theory.stanford.edu/%7Eamitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/%7Eamitp/GameProgramming/AStarComparison.html
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-202%201/Route-Planning-Bagian2-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-202%201/Route-Planning-Bagian2-2021.pdf

	I. Introduction
	II. BASIC THEORY
	A. A* Algorithm
	B. Admissible A* Algorithm Heuristic
	C. Exfiltration in DMZ

	III. IMPLEMENTATION
	A. Mapping into A* Algorithm Domain
	B. A* Main Algorithm

	IV. RESULT
	V. CONCLUSION AND SUGGESTION
	A. Conclusion
	B. Suggestion
	Acknowledgment (Heading 5)
	References

